The journal has been expanding with an accelerated speed. As of today, we have eleven active members of the editorial board. Recently joined us Brian Evans, Yana Shvarstberg and Yu Gu from Pace University, NY, USA, who contribute their time, knowledge, and efforts to shape the journal.

The current volume opens with three papers about special education during the times of pandemic. We all went through tough times learning digital tools within a week and converting our classrooms to remote modality. But for teachers of students with special needs this experience was even more challenging. The first paper Development of Interactive Media with Augmented Reality for Prospective Solution Quota-Friendly Learning and Physical Limitation in the Pandemic Era discusses teaching geometry to hearing impaired students. The authors, Joko Lianto Buliali, Andriyani, and Yudhiakto Pramudya from Indonesia, validate affirmatively the augmented reality uses for teaching spatial vision.

The second paper Impact of adoption of Information and Communication Technologies (ICTs) in Teaching Mathematics to Intellectually Disabled Children, submitted by authors Joyti Sherawat and Poonam Punia from India, studies how technology impacts learning of intellectually disabled children. In their conclusions, the authors’ claim that applied properly, technology can improve learning outcomes for these children.

The third paper, Error Analysis of Dyslexic Student’s Solution on Fraction Operation Tasks, is devoted to a discussion of various erroneous ways dyslexic students may try to solve problems with fractions. Rooselyna Ekawati, et al. from Indonesia, analyze videos shared during professional meetings called Focus Group Discussion in which researchers displayed recorded interviews with students. The team from East Java discussed the symptoms of dyslexia by comparing the ways of thinking among dyslexic and non-dyslexic students. The authors found out that work of dyslexic students is distinctive due to unique inconsistencies within their solutions.

While digital education is very much in the center of our attention, it varies significantly for different groups of student and different mathematics courses. The paper, Utilization of Digital Module for Asynchronous Online Independent Learning in Advanced Mathematics Education, which was submitted by Ryan V. Dio from the Philippines, discusses the efficiency of a design of a learning module for independent studies in graduate mathematics education. We understand that today’s education of teachers will shape the future students, so we very much appreciate the submission and follow up on the conclusions, which claim that the teaching-research methodology is very much suitable for the design and the revisions of the learning modules.
The next paper, Effects of Animated Instructional Packages on Achievement and Interest of Junior Secondary School Student in Algebra, submitted by S. G. Ojo from Nigeria, presents results related to teaching elementary algebra with animated instructions. In the author’s experiment, students exposed to the animated lesson performed better than students from the sample group, who were taught the same lesson in a traditional way. However, according to other studies, the statistical significance of the difference between the methods is negligible. Thus, the experiment may be repeated with more detail to understand the underlying principles of the nature of students’ learning process and their way of thinking after learning from the animated module in comparison to other modules.

In their submission entitled, Developing Conceptual Understanding of Irrational Numbers Based on Technology through Activity System, Abolfazl Rafiepour et al. presents the Activity Theory in the light of digital teaching and learning of irrational numbers. The authors use WhatsApp creatively in a dual way, in one way to encourage students’ collaboration and in another way for collecting the data about students’ progress.

Rahmi Ramadhani, et al. from Indonesia, submitted an ethnomathematics study, Exploration of Students’ Statistical Reasoning Ability in the Context of Ethnomathematics: A Study of the Rasch Model. Here the authors ask the students mathematical questions about cultural items. For example, students were asked to approximate the silk, gold, silver, and cotton threads used in making a Malay Songket displayed in a picture. Students responded with numerical values and justify their answers providing data for quantitative and qualitative analysis of their reasoning abilities.

The submission, Specialized Content Knowledge of pre-service teachers on the infinite limit of a sequence, submitted by Mónica Arnal-Palacián and Javier Claros-Mellado from Spain, displays the difficulties of understanding the concept of infinite limit. The authors study the challenges faced by future teachers while explaining the concept, which is one of the most important ideas of calculus.

The Problem Corner, edited by Ivan Retamoso, contains solutions of previous problems sent by Aradhana Kumari from Borough of Manhattan CC, USA and Jayendra Jha, and Sankalp Savaran from India. The last two contributors shared a geometrical conjecture they discovered. The next problem has been proposed by Aradhana Kumari.

Analysis of Problem Solving Process on HOTS Test for Integral Calculus, by Eko Andy Purnomo, et al. from Indonesia, is a paper that analyzes the process of solving application problems using integrals. Students usually experience difficulties with such problems either due to insufficient background knowledge, insufficient understanding of the mathematical concept, or, most frequently, the lack of cross association between these two. Performing a thorough analysis of the process of performance may help in identifying the challenges and finding remedies. Based on their findings, the authors suggest the statements of the questions should contain the six steps of problem solving process to help the students successfully navigate through the solution.
Problem solving skills of word problems are discussed in the paper, *Computational, Logical, Argumentative, and Representational Thinking in the United Arab Emirates Schools: Fifth Grade Students’ Skills in Mathematical Problem Solving*, submitted by Nabil Kamal Al Farra, et al. from the United Arab Emirates. The authors recall three problem-solving models by George Polya, by Schoenfeld, and by Verschaffel. They use these models to analyze the solutions of their students. The authors imply the models may help the students in their performance while solving word problems.

The process of thinking and constructing mathematical knowledge is the main theme of the last paper of this issue, *Constructing Students’ Thinking Process through Assimilation and Accommodation Framework*, submitted by Siti Faizah, et al. from Indonesia. The authors divide students’ schemes of thinking into assimilation and association in the context of semigroups in the abstract algebra course taught to mathematics majors. They use these findings to direct students’ attention for the purpose of building their knowledge in a particular way creating a spectacular educational process.